Immunological response in the mouse melanoma model after local hyperthermia
ABSTRACT
Our study was aimed to characterize the phenotype and functional endpoints of local microwave hyperthermia (LHT, 42 degrees C) on tumor infiltrating and spleen leukocytes. The effectiveness of LHT applied into the tumor of B16F10 melanoma-bearing C57/BL6 mice was compared with anesthetized and non-treated animals. Subpopulations of leukocytes were analyzed using the flow cytometry, and the cytotoxic activity of splenocytes against syngeneic B16F10 melanoma and NK-sensitive YAC-1 tumor cell lines was evaluated in (51)Cr-release assay. Similarly, the in vitro modification of the heat treatment was performed using healthy and melanoma-bearing splenocytes. We found a 40 % increase of activated monocytes (CD11b+CD69+) infiltration into the tumor microenvironment. In the spleen of experimental animals, the numbers of cytotoxic T lymphocytes (CTLs-CD3+CD8+) and NK cell (CD49b+NK1.1+) raised by 22 % and 14 %, respectively, while the NK1.1+ monocytes decreases by 37 %. This was accompanied by an enhancement of cytotoxic effector function against B16F10 and YAC-1 targets in both in vivo and in vitro conditions. These results demonstrate that LHT induces better killing of syngeneic melanoma targets. Furthermore, LHT evokes the homing of activated monocytes into the tumor microenvironment and increases the counts of NK cells and CTL in the spleen.