Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice
ABSTRACT
This study was designed to determine whether the vaccination of genetically modified dendritic cells (DCs) simultaneously expressing carcinoembryonic antigen (CEA), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin 12 (IL-12) can overcome the peripheral T-cell tolerance to CEA and thereby elicit a therapeutic response in CEA transgenic mice. CEA transgenic mice were immunized once by subcutaneous injection with DCs adenovirally transduced with CEA and T helper-type 1 cytokine genes. The cytotoxic activity of spleen cells against CEA-expressing tumors, MC38-CEA, in the mice immunized with DCs expressing CEA (DC-AxCACEA) was higher than that in those immunized with DCs-AxCALacZ (p < 0.0001), and was augmented by the cotransduction with the GM-CSF/IL-12 gene (p < 0.05). The vaccination with DC-AxCACEA/GM-CSF/IL-12 could elicit a more potent therapeutic immunity than the vaccination with DC-AxCACEA in subcutaneous tumor models (p < 0.0001), and 4 of 5 mice showed a complete eradication of the subcutaneous tumors in these vaccination groups. Even in a large tumor model, this vaccination therapy completely eliminated the subcutaneous tumors in all mice. This antitumor activity mostly vanished with the depletion of CD8(+) T cells and NK cells in vivo and was completely abrogated with the depletion of CD4(+) T cells. A histopathological examination showed no evidence of an autoimmune reaction. No other adverse effects were observed. This vaccination strategy resulted in the generation of highly efficient therapeutic immune responses against MC38-CEA in the absence of autoimmune responses and demonstrated no adverse effects, and may therefore be useful for future clinical applications as a cancer vaccine therapy.